Topology Is Irrelevant (In a Dichotomy Conjecture for Infinite Domain Constraint Satisfaction Problems)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combinatorial constraint satisfaction problem dichotomy classification conjecture

We further generalise a construction – the fibre construction – that was developed in an earlier paper of the first two authors. The extension in this paper gives a polynomial-time reduction of CSP(H) for any relational system H to CSP(P ) for any relational system P that meets a certain technical partition condition, that of being K3-partitionable. Moreover, we define an equivalent condition o...

متن کامل

Infinite Domain Constraint Satisfaction Problem

The computational and descriptive complexity of finite domain fixed template constraint satisfaction problem (CSP) is a well developed topic that combines several areas in mathematics and computer science. Allowing the domain to be infinite provides a way larger playground which covers many more computational problems and requires further mathematical tools. I will talk about some of the resear...

متن کامل

Collapsibility in Infinite-Domain Quantified Constraint Satisfaction

In this article, we study the quantified constraint satisfaction problem (QCSP) over infinite domains. We develop a technique called collapsibility that allows one to give strong complexity upper bounds on the QCSP. This technique makes use of both logical and universalalgebraic ideas. We give applications illustrating the use of our technique.

متن کامل

Complexity Classification in Infinite-Domain Constraint Satisfaction

appeared in the proceedings of ICDT’10. [44] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. In Proceedings of CSL, pages 44–57, Vienna, 2003. [45] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous templates. Journal of Logic and Computation, 16(3):359–373, 2006. [46] M. Bodirsky and D. Piguet. Finite trees are Ramsey with...

متن کامل

Low-level dichotomy for Quantified Constraint Satisfaction Problems

Building on a result of Larose and Tesson for constraint satisfaction problems (CSPs), we uncover a dichotomy for the quantified constraint satisfaction problem QCSP(B), where B is a finite structure that is a core. Specifically, such problems are either in ALogtime or are L-hard. This involves demonstrating that if CSP(B) is first-order expressible, and B is a core, then QCSP(B) is in ALogtime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2020

ISSN: 0097-5397,1095-7111

DOI: 10.1137/18m1216213